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Introduction

This paper continues the authors’ various works [3,4,12,14] on categories
enriched in bicategories. We treat the elements of the theory again, here from a
more algebraic (logical) and less geometric viewpoint. For a bicategory ¥ we first
develop ¥ -matrices before passing on to # -modules, an approach which allows a
simple proof of the cocompleteness of the 2-category ¥ -Cat of ¥ -categories. When
¥ has precisely one object (and so is a monoidal category) the main results are in
works of Bénabou [2], Lawvere [6], and Wolff [15], although a uniform treatment
even in this case has not been published.

The second part of the paper relates variable categories with enriched categories.
For the purposes of this paper a variable category is taken to mean a fibration over
a fixed parameter category C. We show that the domain of variation can be
organized into a bicategory #(C) such that categories varying or - C and # (C)-
enriched categories appear on opposing sides of a biadjunction which iries very hard
to be a biequivalence. In fact, if we impose the mild completeness condition of
splitting idempotents on the fibres of the variable categories, the adjunction does
restrict to a biequivalence with the ‘‘cauchy-complete’’ # (C)-categories.

Our terminology for bicategories and 2-categories is that of [5] and [10].

* The authors gratefully acknowledge partial support from the Italian C.N.R.
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1. Matrices and graphs over a bicategory

Let Set denote the category of small sets.

A bicategory ¥ is said to be locally small-cocomplete when each hom-category
# (U, V') has small colimits and, for all arrows f: U= U, g: V= V’in ¥, the functor
#(f,8): #(U V)= #%(U', V') preserves small colimits.

Let # denote a locally small-cocomplete bicatego:y with a small set # of objects.

The category Set,'# has as objects families X of small sets X, indexed by Ue #;
an element x€ Xy, is called an element of X over U.

The bicategory ¥ -Mat of ¥-matrices is defined as follows. The objects are the
objects of Set/#. An arrow S: X —Y assigns to each pair x, y of elements of X, Y
over U, V, respectively, an arrow S(y,x): U=V in ¥#. A 2-cell ¢: S—S§' is a family
of 2-cells g, ,:S8(y,x)—5'(y,x) in #. Composition of 2-cells S—S’—=S” is com-
ponentwise that of #. Composition of arrows

S T
X—Y—Z
is ‘‘matrix multiplication’’:

(TS)z, x)= EY T(z, Y)S(y, x).
ye
The latter composition is compatible with 2-cells; it is associative and has identities
up to coherent natural isomorphisms.
Small colimits in #-Mat(X, Y) are constructed componentwise in the hom-
categories of ¥. It follows that »-Mat is locally small-cocorplete.
There is a homomorphism of bicategories

Set/ # — y -Mat

which is the identity on objects and takes an arrow /#: X — Y in Set// to the matrix
hy: X —Y given as follows

1,: U=U when y=hx,

ha(y, x) =
(¥, X) EO:U"V otherwise,

where x, y are elements over U, V and 0 denotes the initial object of the category
(U, V). Matrices of the form hy: X — Y have right adjoints #*: Y= X in #-Mat:
the formula for #* is the reverse of that for h,. (In general, not all arrows with right
adjoints in # -Mat are of the form hy4.) If A4 is monic then the unit ly—=h*hy is
invertible. If / is cpic the the counit A4h*—1 is a retraction. (The converses of the
last two sentences are also true provided ¥ has no objects whose identity arrows
are 1niiial.)

For each small set ¥ over # there is a category .#Y over # whose objects over
U are functions S which assign to each elemem y of Y an arrow S(y): U~ V where
visover V, and whose arrows over U are families of 2-cells in #. There is a pseudo-
natural equivalence of categories:
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¥-Mat(X, Y)=(CAT/% }X, PY)

‘L AR

where CAT is a suitably large 2-category of categories.

Proposition 1. The homomorphism of bicategories

Set/#¥ — w-Mat

o e 2 L POV PN

reserves bicolimits. The initial object 0 of Set/% is biterminal in %-Mat. For all
objects X,Y of Set/%, the coproduct diagram

X— X+Y <Y

has the following properties:

(@) %, j*ix are initial in w-Mat(Y, X), »w-Mat(X,Y), and the units 1y —i*iy,
Ly —Jj*js are invertible.

(b) The 2-cell iyi*+ joj*—1x, vy, induced by the counits, is invertible.

(c) The diagram

Xe—X+Y-D v

is a biproduct in ¥ -Mat.

Proof. The assignment Y~ 2Y provides a relative right biadjoint for Set/# -»
#-Mat modulo a change of universe. This suffices for the first sentence of the Pro-
position. The second sentence is trivial.

The units in (a) are invertible since / and j are monic. The remainder of (a) follows
from the fact that the pushout

0 X

Y — X+Y
J

becomes a bipushout in ¥ -Mat.

Since X+ Y is a bicoproduct, the 2-cell of (b) is invertible if and only if its com-
posites with both i, and j are invertible. But the composite with i, is the composite
isomorphism:

(ad*+ JaufF)ixShai* i+ Jaj*ix=is] +j 0= .

Similarly, the composite with j, is invertible. This gives (b).
Given S:Z—X, T:Z—-Y in »-Mat, we obtain i,S+j«T:Z—->X+Y with:

i*(ixS+jsT)=i*ixS+i%T=S,

J¥UxS+j«T)=j*ixS+ % T=T.
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The 2-cell condition is also easily checked, yielding (c). [l

A ¥-graph 4 is a ‘“‘square’’ matrix; that is, an endo-arrow in ¥ -Mat. The object
of Set/# and the matrix from it to itself wiil both be denoted by ¥. So, for each
object U of ¥, we have a small set ¥, of objects of ¢ over U; and, for objects
A, B of 4 over U, V, we have an arrow 9(B, A):U—Vin #. AnarrowH: 49— 9’
of ¥ -graphs consists of an arrow H: ¥ — ¢’ in Set/% together with a 2-cell

H:H*?jH*_’ g’

in ¥ -Mat. So, for each obicct A of ¥ over U, we have an object HA of ¥’ over
U, and, for objects A, B of ¥ over U, V, we have a 2-cell

Hy,: %(B, A)— %'(HB, HA)

in #. This defines a category #-Gph of ¥ -grapns.
Proposition 2. The category ¥-Gph has small colimi .

Proof. Suppose D: ¢ — ¥ -Gph is a functor from a small category %. Let X denote
the colimit of the composite of D with the forgetful functor ¥ -Gph—Set/#. There
are coprojections HC: DC — X in Set/ #. There is a functor

7 = (¥ -Mat)(X, X)
which takes n: C—C’ to the composite

(HOWDCYHO)* — (HC') (D)o DOYDM)*HC")

N ’ { ’ 7y %
HCY Dy HEADCWHC)™
The colimit of the last functor gives an endo-arrow of X and hence determines
a «-graph 4. The coprojections HC together with the coprojections
(HC)o(DCYHC)*— + determine arrows HC:DC— 4 in % -Gph which can be
checked to provide the coprojections of a colimit for D. [

2. Categories enriched over a bicategory

The following definitions occur in an equivalent, but more usuai, form in [12].

A o -category .+ is a -graph .v together with 2-cells y: 1.y, p: vy =¥ in
# -Mat which satisfy the axioms for a monad in ¥ -Mat. Note that «,, becomes the
set of objects for a category whose arrows f:A— B are 2-cells 1,,—.v(4, B) in #
and whose composition is determined by u. It will be convenient to write /., for
this category and not merely for the set of objects of =+ over U.

A o -functor F: + - 4 between ¥ -categories ., # is an arrow of #-graphs
which respects n, u. The arrow Fy: v — .4 and 2-cell F: Fy.« = 41", (corresponding
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to F:Fyo/F*— 4 under F,— F*) determine a ‘‘monad opfunctor’”’ in ¥-Mat (in
the terminology of [9]).

For w-functors F,G:« =%, a #-natural transformation 0:F—G is a 2-cell
0:Fyo/ = 2G4 in w-Mat such that the following diagram commutes.
Fodd ‘ BGyAd — BBGo
|
Fo uG,
BF e/ 70 - BﬁG* "—G'—;—’ BGy

such 8 and 2-cells 8: F.— #G, satisfyin

g~ L 254 22 L2 e a U oex AT ISP 4

the bijection is given by the equations:
x n — Y ~ - R -3
0=6-Fun, O=uGy- #6-F.

With obvious compositions, we have defined a 2-category w-Cat of
¥ -categories, ¥ -functors and ¥ -natural transformations.

A monad m: U—U in the bicategory ¥ can be identified with a » -category ./
which has precisely one object 4 such that A4 is over U and .v/(4, A)=m. In par-
ticular, each object U of » determines a ¥-category which we also denote by U
corresponding to the identity monad on U. There is an obvious isomorphism of
categories:

(7 -Cat)(U, W= Ay

Proposition 3. The forgetful functor from the category |»-Cat| of ¥-categories
and ¥ -functors to the category ¥-Gph has a left adjoint .# whose value at a square
matrix % : X =X Is the geometric series },, _ 4": X = X.

Proof. The monoidal category ¥ -Mat(X, X), whose tensor-product (that is, com-
position) preserves small colimits, is such that the fre> monoid on an object ¢ is
Y %"=.74. The identity of X together with the coprojection ¥ — .74 for n=1
provide an arrow N: % —.7% of #-graphs. Suppose H: % — 4 is an arrow of
¥ -graphs into a # -category 4. Then H*4 H, : X — X is a monoid in ¥ -Mat(X, X),
so the arrow % = H*4H, (arising from H) extends t¢ a unique monoid arrow
#4 - H*#H, which, together with H on objects, determines a unique ¥ -functor
H': 75-+4 with HHN=H. []

Lemma 4. Suppose F,G:.« =4 are monoid arrows in ¥-Mat(X, X) and let
H: . #» — ¢ be * 2 coequalizer of F,G in % -Mat(X, X). The v -graph ¢ possesses a
unique mono ° structure such that H becomes a monoid arrow if and only if



114 R. Betti, A. Carboni, R. Street, R. Walters

H-u- 4F=H-u- 4G and H-u-F# =H-u-G.23. Furthermore, in this case, this
monoid arrow is a coequalizer of F,G in | #-Cat|.

Proof. Composition in ¥ -Mat preserves coequalizers, so the rows and columns of
the following diagram are all coequalizers.

Yy T3 VB ——— ¢

B T3 44— B¢

!

foy T3 A ———— {

The existence of a unique u: 77 —+% such that the square

A — L

commutes is equivalent to the condition that the composite

H
H — 4 > ¢,

A8

should equalize both of the pairs

AF F4
B T3 48, RT3 44,
4G G4

As we must, define n:1—> ¢ to be Hp. I'rom the construction in Proposition 2 we
see ithat H is the coequalizer of F, G in the category of ¥ -graphs. It is easy to see
that K: 7~ — 4 is a »-functor if and only if KH is, for any arrow K of # -graphs
into a » -category . [

Proposition 5. The category | v -Cat| has coequalizers.

Proof. Take two »-functors F,G:.v —.4 and form the coequalizer * of the
underlying arrows of » -graphs (Proposition 2). Let 2 be the coequalizer of the
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¥-graph arrows #F, 7G: ¥ —.7%2. Then we have the following diagram in
¥ -Cat:

FFAd
| +

o T/ 3 B ——— F¢

» FIB

— y 4

The category of monoids in #-Mat(X, X) is monadic over ¥ -Mat(X, X) (since ten-
soring with a fixed object on either side preserves countable coproducts). So the first
two columns of the above diagrams are coequalizers which are absolute (split) at the
underlying level. Since 7 is a left adjoint, the first two rows are also coequalizers.
Lemma 4 applies to the two arrows in the third column of the above diagram (since
it applies to the first two columns) to yield the coequalizer of those two arrows in
| # -Cat|. By commutativity, an arrow from .2 into this coequalizer is induced. By
the ‘‘3x 3-diagram lemma’’ this arrow is then the coequalizer of F,G. [

Theorem 6. The forgetful functor |»-Cat|— #-Gph is monadic.

Proof. Consider again the diagram in proof of Proposition 5, this time with F, G
a split pair at the »-graph level. Then the top two rows are split coequalizers. By
Lemma 4 the columns are coequalizers at both the | ¥-Cat| and ¥ -Gph levels. By
the ‘‘3x 3-diagram lemma’’, the coequalizer of F,G is preserved by the forgetful
functor. Since the forgetful functor reflects isomorphisms and in view of Proposi-
tion 3, the result follows from Beck’s Theorem [8; p. 151 Ex. 6}). U

Theorem 7. The 2-category ¥-Cat admits all small colimits.

Proof. That the category | # -Cat| has all small colimits follows from Proposition
2, Theorem 6, Proposition 5, and Linton [7; p. 81].
A monad &¢/: X~ X in ¥-Mat leads to a monad

RN
( ):X+X-'X+X
0 ¢

in # -Mat which is easily verified to have the property required of 2& .« in # -Cat;
(#-Cat)2®.«, #)=]2, ¥-Cat(.v, .8))].

It remains to prove that small colimits in | #-Cat| are preserved by the category-
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valued representables ¥ -Cat(--,.¥) and hence are colimits in ¥ -Cat. This will
follow if we can prove that the functor

2® - |#-Cat|—|¥-Cat|

preserves small colimits. That it preserves small coproducts is trivial. That it
preserves coequalizers of the type in Lemma 4 follows from the straightforward
observation that the functor #-Gph— ¥ -Gph which takes

&

Y

4
4:X—-X to (0 ):X+X—>X+X
preserves coequalizers (see Proposition 2). Using the construction of Proposition 5
and these facts, we deduce that 2® — preserves all coequalizers. [

3. Modules

Suppose .v, .4 are # -categories; that is, monads ' : X=X, .4 : Y=Y in »-Mat.
Composition with .%,.4 on the right, left (respectively) determines a monad
¥ -Mat(.v, .4) on the category »-Mat(X,Y). The category of Eilenberg-Moore
algebras for this monad is denoted by:

# -Mod( v, .4).

An object @ of »-Mod(w,.4) is called a »-module from v to .4; it consists of a
matrix @ : X - Y together with compatible actions p: ®.v > d, 1: 4P~ P,

For #-modules &:+v -4, ¥: 4 -+, there is a composite #-module
Y. , - defined in the familiar ‘‘tensor-product-like’’ manner; that is, it is made
up of the coequalizer in »-Mat(X, Z) of the pair

YA, 0. ¥ 4D >V,

the ¢ induced by the o of @&, and the A induced by the A of Y.

This defines a bicategory »-Mod whose objects are ¥ -categories and whose
arrows are » -modules.

The category «-Mod(, .4) has small colimits since #-Mat(X, Y) has small
colimits and # -Mat(.+, .4) preserves them. Composition with a # -module preserves
the small colimits since coequalizers commute with colimits. So # -Mod is locally
small-cocomplete.

Each #-functor F': ' -» 4 determines a » -module Fy: v —.4 whose underlying
matrix is the composite

Y r—nr

and whose actions 9, 4 are the composites

/j[:* ¥ ,yF OjlfF*"—”—'_—_—’ ;:?F*, ”/fF*

AF.
“F, uF, *
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Modules of the form F,: « — % have right adjoints F*: # —.«. The #-functor F
is fully faithful if and only if the unit 1_,— F*F, is invertible. If the #-functor F
is bijective on objects, then the counit gives a coequalizer diagram:

FoF*F F*3F F*—1,

in ¥-Mod(, #); for this is now the Eilenberg-Moore category ¥-Mod(«, #) " +.
For w-functors F, G : & — #, there are natur:l bijections between 2-cells F, =G, in
¥ -Mod, 2-cells G*—F* in ¥-Mod, and ¥-natural transformations F—G.

[We have extended the ‘‘hyperdocti-ine’’ Set/# — w-Mat of Section 1 to a
“hyperdoctrine’’ ¥-Cat— ¥-Mod.]

As remarked just before Proposition 3, objects A, B of & over U,V can be
regarded as ¥#-functors A:U— .o/, B: V—.«. Observe further that .«/(A4, B) = A*By.
Given a cospan:

;ﬂ_’%r‘—-(d

in ¥-Cat, it is therefore consistent to denote the ¥-module G*Fyi:.v = # by
#(G, F). We shall now see that every ¥-module has this form.

The mapping cone Cn(®) of a ¥-module @ :.« = 4 is the ¥-category detined
as follows. Suppose .+, .4 are monads on X, Y in ¥ -Mat. Then Cn(®) is the monad
on Y+ X made up of the matrix

('2f ¢>:Y+X—*Y+X,
0

(6 )

and multiplication

(u (o, A))
0 u /)

In an obvious way we obtain a cospan

with unit

J I ,
A Cn(P) — v/

in ¥-Cat, and Cn(@)(J, )=J*1«=P.

4. Right liftings and limits

Suppose now that ¥ satisfies the following further conditions:
C1. Each hom-category ¥ (U, V') has small limits.
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C2. Each pair of arrows F: U~ W, g: V- W adnits a right lifting gh f: U-V
of f through g:

h-gf
gh—f

Thecrem 8. The bicategories ¥-Mat and #-Mod both satisfy conditions C1 and
C2.

Proof. Limits in ¥-Mat(X, Y) can be constructed componentwise so that C1 for
¥ -Mat is easy. For matrices S: X—=Z, T: Y—Z, the formula for TNS: XY is:

(TOSYy,x) = 11 1 NSz, x);

with this, C2 is easily checked.

Since ¥ -Mod(#, .4) is monadic over ¥ -Mat(X, Y), limits are carried over; so Cl
for w-Mod follows. For modules @ : .« =+, ¥: .4 =+, the module ¥MN® : v — 4
is made up of the equalizer in »-Mat of the two arrows:

rHo YN P

N

PN

the o induced by the ¢ uf @, and the 4 induced by the ¢ of ¥. Condition C2 for
7 -Mod is easily checked. I

For each «-category .4 based on the category Set of small sets, there is a
i -cateogry .74 based on SET, defined as follows:
(78);= #-Mod(U, 4), (?4)¥,d)=¥YN,
There is a pseudo-natural equivalence:
#-Mod(./, 4)= »-CAT(, .74).

Precisely the same arguments used in proving Proposition 1 now yield:

Proposition 9. The homomorphism y-Cat— v -Mod sarisfies ali the properties
listed for the homomorphism Sei/ # — ¥ -Mat in Proposition 1. ]

Theorem 10. The 2-category o -Cat has all small limits.

Proof. Suppose J: 7 —Cat, D:+ — »-Cat are functors from a small caregory .
Write D, for the composite of D with #-Cat(U, -): #-Cat—Cat. Define a ¥ -
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category ¥ as follows. An object of ¥ over U is a natural transformation
A:J—Dy. For objects A, B of ¥ over U,V, take #(B, A) to be the limit in
#(U, V) of the diagram:

(DC)XBcJ, Acd) (DC'KBcj' Acii)
DCXL, Acd)- Dun\ /DC NBcS 1)
(DC’)Bc(Jn)j, Aci’)

as n,¢ run over arrows n:C—C’, £:(Jn)i—j’ in ¢, JC’, respectively. One may
verify the isomorphism

(w-Cat)(#, ¥)=[¢, Catl(J, #-Cat(z, D)). O

S. Fibrations as enriched categories

Let C denote a small category whose set of objects is #. Rather than the
2-category of fibrations over C, we prefer to deal with the equivalent 2-category

#(C)=Hom(C*?, Cat)

of homomorphisms from C° to Cat and strong (=pseudo-natural) transforma-
tions between them. We identify the category C=[C°P,Set] of presheaves on C
with a full sub-2-category of .#(C) consisting of discrete objects. We also regard C
as a full sub-2-category of .#(C) consisting of representable objects.

Recall the construction of the bicategory Spn ./ from a category .« with pullbacks
(Bénabou [1, p. 22]). Our convention is to draw a span S from U to V as

Ve—S— U,
and to identify an arrow f:U—V in ./ with the span

1
vl vt

It is a straightforward calculation to verify the following assertion (the case ./ = Set
suffices):

An arrow S in Spn .«/ has a right adjoint if and only if it is isomcrphic to an arrow
mn .v.

Let »(C) denote the full subbicategory of Spn C determined by the objects which
are actually in C. Arrows in #(C) are spans in C between objects of C.

An arrow in ¥ (C) has a right adjoint if and only if it is isomorphic to an arrow
in C. (This follows from the above assertion about adjunctions in Spn.¥ and the
Yoneda Lemma.)

The properties required of # in Section 1 and properties C1, C2 of Section 4 are
satisfied by ¥ (C) since C is a Grothendieck topos.
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Our purpose now is to study the relationship between .#(C) and ¥ (C)-Cat. This
study begins with the 2-functor

L : #(C)— #(C)-Cat

defined below.

Each object T of #(C) determines a #(C)-category LT defined as follows. An
object of LT over U is an object of TU which we can also view as an arrow U—~T
in .#(C) (using the bicategorical Yoneda lemma). For objects x, y of TU, TV, the
arrow (LT)(x, y): V—U in #(C) is the span from V to U obtained as the comma
object of x:U—~T, y:V—T in #(C):

dy
(LTYxy) —

d,

A
=

U

_.__.,T

Since U, V have values in Set, so does (LT)(x, ). More explicitly,
(LTYx, »S={(u,6,0)|u:S—=U,v:S—V in C and
0 :(Tu)x—(Tv)y in TS}.
Composition for LT is given by:
(LTYx, )2 (L Ty, 2))S (LT )x, 2)S,
(1, 6, v), (v, @, W)) = (1, PO, W).

For each arrow ¢: T—7T"' in .#(C), there is a ¥ (C)-functor Lo:LT—LT’. The
object v of LT over U is taken to (La)x=ayx, and the function

(LO) S (LTYx, )S=(LT Noyx, 0y ))S
takes (i, 6,v) to (4,0',v), where 8’ is the composite

(T'u)ox)=04{Tu)x ——— ag(Tv)y=(T'v)(o}Y).
09(9)

Theorem 11. The 2-fun.tor L: »(Cy— #(C)-Cat has a right adjoint with fully
faithful unit.

Prool. Since C is a small full dense sub-2-category of .#(C) and # (C)-Cat is small
cocomplete (Thecrem 7), a right adjoint I~ for L must have the form:

I/ =yw(C)-Cat(lL—, v):CP-Cat.

The unit #:1—=7L has component at T given by the composite:

T— = #(C)(~, T)—= #(C)-Cat(L~, LT)=I(LT)-.
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There is a w-functor i, : U= LU for each object U of C which takes the one
object of U to 1, as an object of LU over U. (The objects ¢f LU over V are
arrows V—=U in C.)

To see that nr:T—ILT is fully faithful, take x,y:U—T in #(C) and
0:Lx=Ly in w(C)-Cat. This gives Oiy: x=(Lx)iy—(Ly)iy=y in (LT)y, which
means a map of spans 1, —=(LT)x, y) from U to U:

1

v,
8 (LTXx, ) U
i = y
U T

X

Thus we obtain a unique 2-cell

X
— T T
Uxu)’o)/T
in .¥(C) with L¢ =6. This completes the proof that 5 is fully faithful.
The #(C)-functor ¢, : LI/ = ./ takes an object A : LU —.&/ over U to the object
of .« over U corresponding to Aiy: U—=.&/. Given A: LU—.«/, B: LV — % in ¥ (C)-
Cat, we must describe an arrow of spans

(LI )(A, B)— «/(Aiy, Biy)

from V to U in C. Elements of (LI'¥)(A, B)S are triples (u, 6, v) where u, v make
S into a span in C from V to U and 0: A-Lu=B-Lv is a #(C)-natura! trans-
formation. Composing with ig: S—LS, we obtain a 2-cell (4-iy)su=(B-i,)s0 in
¥ (C)-Mod. This gives a 2-cell uv*=(A4i,)*(Biy)« in ¥ (C)-Mod between arrows
from V to U. But % (C)-Mod(V,U)= #(C)(V,U). So we have an element of
¥ (Aiy, Biy)S=(Aiy)*(Bi,)S.

The adjunction identities can be routinely checked. [J

Theorem 12. The 2-functor L : #(C)— » (C)-Cat preserves small limits.

Proof. Since the construction of L involves comma objects which are therselves
limits ‘n .#(C), the verification is routine. [J

6. Cofibrations and cauchy completeness

For any small bicategory .#, fibrations in Hom(.#°P,Cat) were extensively
studied in [11]. A bicategory DFib(Hom(.#°P,Cat)) was constructed having the
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same objects as Hom(.#°P, Cat) a.... having the bidiscrete fibrations as arrows. To
each homomorphism T : »°P —Cat was associated its cooperative homomorphism
#T: »“°—>Cat which provided the following representation of bidiscrete
fibrations:

DFib(Hom(.#"°P, Cat))(S, 7') = Hom(#°P, CATNS, [(#T)°F, Set]).

A fibration in » is a span in # which is taken to a fibration by
# =»Hom(x°P,Cat). This agrees with the definition in [10] where the fibration
property is expressed in terms of finite bilimits in . A finitely bicomplete and
finitely bicocomplete bicategory .#° was called fibrational when bipullback along a
leg of a fibration preserved the bicolimit involved in the definition of fibrational
composition. Under these conditions one obtained a bicategory DFib(.#) with the
same objects as .» and with bidiscrete fibrations in .#" as arrows.

By a change of universe, the construction of DFib(.#) can be made even when
# is not small and agrees with that of the first paragraph of this section when ap-
plied to Hom(.#°F, Cat).

Fibrations in .# °P are called cofibrations in .», and bidiscrete fibrations in .#°P
will be called modules in ». When #°F is fibrational, we obtain a bicategory
DFib(.» °P); set

Mod(.# ) = DFib(.# °P)°,
If both .» and .#°P and fibrational, there is a homomorphism
Mod(.# )= DFib(.¥)

which is the identity on objects and which takes each module to the bicomma object
of its underlying cospan. The dual construction gives a left biadjoint for this
homomorphism.

Theorem 13. For any smali category C, the bicategories #(C), .#{C)°? are both
Jibrational and the homomorphism of the last parugraph provides a biequivalence:

Mod(.#(C)) ~ DFib(.#{C)).

Proof. It was proved in [10] :hat Cat and Cat®? are both fibrational. Every module
in Cat is the cocomma object of its comma object. This gives the result for “‘cons-

tant categories’ (C=1). The ‘‘variable’’ case is then straightforward after
[11; 3.8].

Theorem 14. Suppose » is a locally small-cocomplete bicategory with a small set
of objects that satisfies C1, C2 of Section 4. Then (% -Cat)® is a fibrational
bicategory and there is a biequivalence

 -Mod ~ Mod( ¥ -Cat)

which is the identity on objects and takes each ¥ -module to its mapping cone.
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Proof. The case where # has one object was dealt with in [10; §6]. The generaliza-
tion here provides no difficulties. [J

A module from A to B in a bicategory # is called cauchy when it has a right
adjoint in Mod(»). A module from A4 to B in . is called convergent when there
exists an arrow f: A— B in # such that the module is equivalent to the bicocomma
object of the span

1
Bl 4—2,4

Every convergent module is cauchy. Call an object B of .# cauchy-complete when
every cauchy module into B is convergent. Write .#;. for the full subbicategory of
# consisting of the cauchy-complete objects.

Corollary 15. The 2-functor L : #(C)— »(C)-Cat induces a homomorphism of
bicategories

L :Mod .#(C)— #(C)-Mod.

Proof. Since Mod(.#) is constructed from .» using finite bilimits and finite
bicolimits, the result follows from Theorems 11, 12, 14. [

Proposition 16. (a) An object T of .#(C) is cauchy-complete if and only if, for all
objects W of C, idempotents split in the category TW.

(b) An object v of ¥ -Cat is cauchy-complete if and only if, for all objecis W
of ¥, each cauchy ¥-module W — ./ is convergent.

Proof. Part (b) follows from the fact that the objects W of ¥ -Cat can be used to
detect convergence of modules; as a special case, an object of Cat is cauchy-
complete if and only if each module from 1 into it is convergent. It can be calculated
from this (as is well known) that cauchy-complete categories are those in which
idempotents split.

To prove part (a), take T e .#(C). Suppose idempotents split in each TW. For each
object W of C, the evaluation homomorphism evy, : #(C)—Cat preserves finite
limits and colimits, and so an arrow E : X = T with a right adjoint £* in Mod(.#(C))
gives an arrow Ey : XW—TW with a right adjoint in Mod(Cat). Since TW is a
cauchy-complete category, there exists a functor fy : XW —TW such that Ey, E W
are isomorphic to the discrete fibrations associated with the comma categories
TW/fw, fw/TW, respectively. Since E, E* are homomorphisms, it follows that the
functors fy are the components of a strong transformation f: X— 7. Clearly £
converges to f. So T is cauchy-complete.

Conversely, suppose T is cauchy-complete in .#(C). An idempotent in TW
amounts to an idempotent in .#(C)(W, T). This gives an idempotent betwecn con-
vergent modules whose splitting gives a cauchy module W —T. Since T is cauchy-



124 R. Betti, A. Carboni, R. Street, R. Walters

complete, this splitting converges giving a splitting of the idempotent in TW. [J

7. The main biegnivalence

For each object T of #(C), there is a homomorphism of bicategories
2T :C° —-CAT whose value at W is given by

(.?T)W=Mod #(CY(W, T)=[(W# T), Set].

This determines a homomorphism
2 #{(C)°P > Hom(C, CAT)

which is part of a Yoneda structure {11; §6]. Recall also the definition of .” for
enriched categories given earlier (Section 4). For each Te .#(C), there is a com-
parison ¥ (C)-functor

LAT—?LT

determined using the fact that both .»’s represent modules and using Corollary 15.

For the next result it is helpful to use the explicit description of #T : C—Cat for
Te »(C). The value of #T at We C is the category W# T whose objects are pairs
(f, x) where f: U— W is an arrow in C and x € TU, and whose arrows (4, &) : (f, x)—
(fx") consist of h: U—U’in C,&:x—(Th)x' in TU with f=f"h.

Proposition 17. The 2-functor
L :Hom(C"",CAT)— # (C)-CAT

is a logical morphism of Yoneda structures, in other words, the comparison arrow
is an equivalence

L?T=»LT.

It follows that L takes cauchy-complete objects of .¥(C) into cauchy-complete
1w (C)-categories.

Proof. The comparison arrow (L.#T), —(.”LT), takes a bidiscrete fibration £
from W to T to the »(C)-module @ from W to LT given by @(x)=x*E:

(D(x)\

U‘/p.b. \E
LT N,
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On the other hand, a #(C)-module @ from W to LT determines a functor
E : (W# T)°® —»Set whose value at (f, x) is given by

E(f, x,= ¥ (CY(W, U)(S/*, (X))

Clearly the bidiscrete fibration corresponding to this E (under the representation
theorem) is taken to an isomorph of @ under the comparison arrow. The remaining
details are easily checked. J

Proposition 18. The right adjoint I” of L preserves cauchy completeness.

Proof. Let .+ be a cauchy-complete ¥ (C)-category. Then
('¥)YU= w(C)-Cat(LU, v )= # (C)-Cat(l, «)

(since LU is the cauchy-completion of U), which is equivalent to the full sub-
category of w(C)-Mod(U,.v) consisting of the cauchy modules. Now % (C)-
Mod(U, &) is small cocomplete, so certainly idempotents split therein. Suppose
@ :U—.v is cauchy and g: & — @ is an idempotent. Then we have a corresponding
idempotent o*: @*—@* on the right adjoint of &. A splitting for o* gives a right
adjoint for a splitting of o. [

Theorem 19. The 2-functor L : ¥(C)— #(C)-Cat restricts to a biequivalence
H(C)ee = (¥ (C)-Cat),,.

Proof. The unit n: 1—7L is fully faithful (Theorem 11). If 7T is cauchy-complete

in ¥(C) then LT is cauchy complete. Since LU is the cauchy-completion of U, we
have:

w(C)-Cat(LU,LT)= ¥ (C)-Cat(U,LT)

which has the same objects as TU. It follows that n is surjective on objects up to
isomorphism.

Suppose . is a cauchy-complete »(C)-category. Objects of LI'v are #(C)-
functors U +.«/, which amounts to objects of .«/. Take two objects A, B of ./ over
U, V, respectively. To give a 2-cell

v

S - vV
l

u 8 lB

U a4

A
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in »(C) is precisely to give a 2-cell

v
s —
u =

B,

R =

U R
in # (C)-Mod. But a 2-cell A4u= B,v amounts to a 2-cell uv*=A*B,in ¥ (C)-Mod.
This is the same as a map of spans S —.«/(A4, B). So (LI'¥)(A, B)= «/(A, B). Thus
¢, is an equivalence. ]

Let Rel(C) denote the bicategory whose objects are the objects of C, whose arrows
are relations in C between the representables, whose 2-cells are inclusions, and
whose composition is the usual composition of relations. There is a homomorphism
of bicategories

i (C)— Rel(C)

which is the identity on objects and is given on hom-categories by the reflection of
spans into relations.

Corollary 20. The 2-functor L induces a biequivalence of 2-categories
[C°F, Poset] ~ (Rel(C)-Cat),.

where Poset denotes the 2-category of small ordered sets. ]

The result of Walters [14] characterizing presheaves on C as symmetric cauchy-

complete Rel(C)-categories is obtained on restriction of the biequivalence of
Corollary 20.
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